Hidden symmetries and nonlocal group generators for ordinary differential
نویسندگان
چکیده
Hidden symmetries of ordinary differential equations (ODEs) are studied with nonlocal group generators. General forms are given for an exponential nonlocal group generator of an ODE that is reduced from a higher-order ODE, which is expressed in canonical variables and which is invariant under a two-parameter Lie group. The nonlocal group generator identifies a type I hidden symmetry. Type II hidden symmetries are found in some reduction pathways of an ODE invariant under a solvable, nonabelian, three-parameter Lie group. The algorithm for the appearance of the type II hidden symmetry is stated. General forms for the reduced nonlocal group generator, which identifies the type II hidden symmetry, are presented when the other two commuting original group generators are in normal form.
منابع مشابه
Reduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملHidden Symmetries, First Integrals and Reduction of Order of Nonlinear Ordinary Differential Equations
The reduction of nonlinear ordinary differential equations by a combination of first integrals and Lie group symmetries is investigated. The retention, loss or even gain in symmetries in the integration of a nonlinear ordinary differential equation to a first integral are studied for several examples. The differential equations and first integrals are expressed in terms of the invariants of Lie...
متن کاملHidden and Not So Hidden Symmetries
Hidden symmetries entered the literature in the late Eighties when it was observed that there could be gain of Lie point symmetry in the reduction of order of an ordinary differential equation. Subsequently the reverse process was also observed. Such symmetries were termed “hidden”. In each case the source of the “new” symmetry was a contact symmetry or a nonlocal symmetry, that is, a symmetry ...
متن کاملNonlocal symmetries of a class of scalar and coupled nonlinear ordinary differential equations of any order
In this paper we devise a systematic procedure to obtain nonlocal symmetries of a class of scalar nonlinear ordinary differential equations (ODEs) of arbitrary order related to linear ODEs through nonlocal relations. The procedure makes use of the Lie point symmetries of the linear ODEs and the nonlocal connection to deduce the nonlocal symmetries of the corresponding nonlinear ODEs. Using thes...
متن کاملNonlocal Symmetries, Telescopic Vector Fields and λ-Symmetries of Ordinary Differential Equations
This paper studies relationships between the order reductions of ordinary differential equations derived by the existence of λ-symmetries, telescopic vector fields and some nonlocal symmetries obtained by embedding the equation in an auxiliary system. The results let us connect such nonlocal symmetries with approaches that had been previously introduced: the exponential vector fields and the λ-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995